Deployment and Development of a Cognitive
Teleoreactive Framework for Deep Sea Autonomy

Christopher Thierauf
Deep Submergence Laboratory
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts, USA
christopher.thierauf @ whoi.edu

Abstract—A new AUV mission planning and execution soft-
ware has been tested on AUV Sentry. Dubbed DINOS-R, it draws
inspiration from cognitive architectures and AUV control systems
to replace the legacy MC architecture. Unlike these existing
architectures, however, DINOS-R is built from the ground-up to
unify symbolic decision making (for understandable, repeatable,
provable behavior) with machine learning techniques and reactive
behaviors, for field-readiness across oceanographic platforms.
Implemented primarily in Python3, DINOS-R is extensible,
modular, and reusable, with an emphasis on non-expert use
as well as growth for future research in oceanography and
robot algorithms. Mission specification is flexible, and can be
specified declaratively. Behavior specification is similarly flexible,
supporting simultaneous use of real-time task planning and hard-
coded user specified plans. These features were demonstrated in
the field on Sentry, in addition to a variety of simulated cases.
These results are discussed, and future work is outlined.

I. INTRODUCTION

Scientific uses of AUVs increasingly show the limitations
of existing software for AUV planning, deployment, and
runtime. In particular, although the MC (Mission Controller)
system in use on AUV Sentry has repeatedly proven itself
for lawnmower patterns, it presents several key limitations
stemming from its rigid implementation. Most notably, it is
capable of executing basic “go-to” commands and similar
functionality, but was not engineered for scalability to new
mission modalities or real-time interventions.

As a consequence, MC is unable to perform adaptive
sampling surveys, and it cannot re-task mid-operation based on
internal reasoning. For example, if the on-board CTD indicates
a point of interest (such as a hydrothermal plume), Sentry is
unable to reason that, because it is ahead of schedule, it should
take an hour to descend and investigate. Human operators also
cannot retask while underway to avoid failure or obtain new
objectives. Its behavior is not interpretable: when erroneous
behaviors are taken, operators cannot query the system as to
why. Further, it is not verifiably safe: system bounds cannot
be predicted beyond assumptions stemming from experience.
When failures occur, it cannot communicate the reasons for
these failures and potential solutions, and it cannot mitigate
them.

Expert operators are able to overcome many of these
challenges through clever exploitation of MC’s features, or
specialized one-off programs which extend it. MC does permit
an acoustic interface to inject a limited set of commands,

] [Python API] [Acoustic Input]
I T

v

[Interface Layer]

v v

[cu
|

Knowledge Deliberation and Execution
Task Planner
Y
Behavior Executor
Behavior Layer

Fig. 1. The DINOS-R Architecture. See Section [[V] for detail.

and so basic functionality like speed or altitude can be
manipulated. However, real-time retasking of objectives (such
as adding new survey zones or adding new keep-out zones)
remains infeasible. Regardless, these workarounds introduce
risk and do not fully resolve these open needs.

The cost is both financial and scientific. Plans take longer
to produce and may be more prone to error, because they
require specialized expert operators to carefully consider each
step. Certain deployments are not feasible as a consequence
of poor adaptability and retaskability, and so certain scientific
objectives cannot be obtained. Real-time mission data cannot
be acted upon, and so scientists are forced to budget for
multiple exploratory dives rather than one that explores and
then collects high-value data. In the event of failure, neither
the AUV nor its human operators cannot adapt the mission
in real time to correct. There is additional developmental
cost: adding new features is challenging, and supporting new
mission modalities is non-trivial.

This motivates the creation of a new mission planning and
control architecture for Sentry, dubbed DINOS-R. The key
difference between DINOS-R and existing mission execution
architectures is a grounding in cognitive architectures, which
have broadly been successful at producing interpretable and
complex long-horizon robot behavior. Conversely, DINOS-
R differs from cognitive architectures by focusing on AUV
mission specification and deployment, which cognitive archi-
tectures have not (generally) been deployed to. In particular,
DINOS-R places a greater emphasis on AUV field-readiness
than exploration of novel architectural components, and does

not consider learning and human interaction as a priority. For
these reasons, it should be considered closer to a teleoreactive
architecture than a truly cognitive one, but it draws heavy
inspiration from each.

DINOS-R has several notable features. It is a symbolic
orchestrator of reactive behavior, and so it produces easily
interpretable and quickly modifiable behavior. It contains a
long-horizon planning system tightly integrated with a failure
identification system, and so it is capable of mitigating failures
should they occur. Ongoing system decisions and commands
occur at a human-interpretable level, and domain-specific in-
formation is provided to the system using Python to avoid use
of niche languages. It provides tooling to add new behaviors
and new implementations of existing behaviors, while ensuring
that these behaviors remain within a framework that performs
behavior reasoning, planning, and assessment.

DINOS-R has been tested in the field, although additional
development is required and remains ongoing. This paper de-
scribes these developments. Background in other architectures
is presented, and a set of guiding development principles is
introduced. A field test aboard AUV Sentry is described before
discussion of future work.

II. BACKGROUND

MC is an in-house system that has behaved as a stable
workhorse for the Sentry program across over 700 dives.
Expert operators use a standardized set of Matlab programs
to define waypoints, zones of interest, altitude changes, and
other mission steps. These programs then output a series of
command strings which, when provided to MC in sequence,
will cause Sentry to perform the desired mission. This allows
experts to maintain direct predetermined control of robot
behavior, and performance can be reasonably predicted. When
underway, basic interventions (generally for safety or basic
monitoring) can be performed acoustically.

As previously outlined, however, this does present key
limitations. Adaptive sampling with Sentry has only been
performed using highly specialized programs which do not
generalize to other domains. Missions must be specified by
hand by expert operators, locking the user out of contributing
directly to mission planning and increasing the potential for
operator error. Further, it introduces greater development cost
when new behaviors or hardware are to be integrated. Perhaps
most critically, MC is not resilient: though it has proven
reliable when within scope, the fact that it operates by naively
following predetermined steps prevents it from responding
to changes in the environment or capabilities. Sentry faces
these limitations despite considerable advances in robot control
architectures.

Reactive architectures are appealing for their ability to
address the resilience problem. Most famously, subsump-
tion [1] demonstrated robust low-level behaviors, but lacked
explicit mechanisms for deliberative planning. This limita-
tion prevents working towards real-time goals, a challenge
that has been addressed using three-layer architectures (as
a non-comprehensive listing, consider SFX [2], AuRA [3]],

or ATLANTIS [4]). By dedicating layers to deliberation,
sequencing, and reactive execution, fairly robust behaviors
can be maintained alongside long-horizon sequencing of said
behaviors.

Cognitive architectures like DIARC [5]], Soar [6], ACT-
R [7], RCS [8], and others have advanced beyond these
systems through an emphasis on reasoning, communication,
and learning by seeking to be as human-like as possible.
DIARC, in particular, has demonstrated that it can integrate
with a variety of platforms, reason about failure and future
actions, and conduct dialogues. These dialogues permit human
instruction of complex tasks alongside robot explanations of
ongoing failure or failure mitigation strategies. While we do
not require the ability to speak with Sentry while it operates
sub-sea, this capability highlights the potential to interpret and
instruct behaviors of these systems, which is highly desirable.

Despite the impact of cognitive architectures on domains
like human-robot interaction and unmanned field vehicles,
these realizations have broadly not made their way to oceanog-
raphy. That said, deliberative control systems have played a
crucial role in enabling long-horizon missions. For example,
T-REX [9]], the “teleoreactive executive”, provided the ability
to sequence reactive behaviors using a temporal task planner,
and was designed specifically for AUVs. However, it required
specialized knowledge (in particular, of the NDDL language)
that has prevented use outside of niche operators, and as such
it is no longer maintained. More widespread architectures,
like MOOS-IvP [[10]] are capable of mission-level autonomy,
but are generally very rigid and do not perform long-horizon
planning, failure analysis, or re-tasking.

Aerospace mission planners (e.g., [[L1], [12]) provide valu-
able insights in automating temporal planning for long-horizon
safety-critical missions, but are often so safety-critical that
mission planning requires a high element of human—in—the—
loop. Additionally, they often depend on an operational loop of
human planning, robot acting, then waiting in a safe state while
another set of instructions is crafted. This approach is not
viable sub-sea, where sea currents and other dynamic factors
require agents to constantly adapt to their environment.

There are works providing general-purpose real-time plan-
ning systems. Notably, ROSPlan [13] provides a planning
framework, already integrated into the ROS middleware [14]]
(which is currently in use on Sentry), and remains both
robot and domain agnostic. Other architectures (consider
CLARAty [15] or FogROS [16]) offer similar features. How-
ever, it does not provide the tight coupling between deliber-
ative and reactive behaviors that we require here, does not
provide reasoning about failure and similar resilience strate-
gies, and does not provide tools for non-experts to interpret
and produce complex robot behavior.

To prioritize interpretability by non-expert operators, alter-
native strategies are often presented. Perhaps most notably,
behavior trees [[17] provide visual and often intuitive represen-
tations of behavior, while potentially remaining modular and
reactive. They remain a sensible choice for many applications,
but are not suitable here. They struggle to scale, particularly

for complex missions; they cannot be re-tasked or provided
with new information, states, or behaviors; and they lack tem-
poral reasoning and other features. Like finite state machines,
they require substantial scaffolding to support the functionality
already present in cognitive architectures, though they remain
useful as a strategy that these architectures can employ.

Thus, merging the ease-of-use of an explicitly interpretable
cognitive architecture with the functionality and reliability
of reactive system provides a compelling path for complex
mission deployments. This work builds upon the power of
Cognitive Architectures (most notably DIARC [S]) as well
as the success and shortcomings of three-layer and teleo-
reactive frameworks (most notably, T-REX [9]). In doing
so, an architecture is produced which is interpretable and
extensible for AUV mission planning, and is capable of robust,
long-horizon planning, real-time retasking, and adaptive and
resilient behavior.

To accomplish this, DINOS-R provides a toolkit for plan-
ning and executing missions by providing components for
real-time long-horizon planning, trackline generation, runtime
monitoring, and self-assessment. Additional hooks for planned
components are also provided. This produces an architecture
that is capable of running standard “lawnmower” missions as
well as complex real-time retasking and adaptive sampling,
while ensuring that it is capable of growth and adaptation to
other platforms. The specific components and rationale that
enable this are outlined next.

IIT1. DESIGN PHILOSOPHY

Sentry is used in a dynamic range of deployments: although
all deployments can be summarized as “go to points of interest
and collect data there”, the strategy used to obtain each point
(e.g., lawnmower vs. series of go-to’s or some combination of
both) and the data collected at each (e.g., multibeam SONAR
vs. photography vs. sidescan SONAR) varies deployment to
deployment. Thus, the software which Sentry employs must
be similarly dynamic.

At odds with the need for complex dynamism is the need for
simplicity and interpretabiliy. Sentry is deployed by technical
experts at the behest of clients who are (generally) scientific
experts with unique scientific needs. Neither of these are
familiar with niche languages like LISP or NDDL, and this
lack of familiarity cannot be an obstacle to their use of the
system. Therefore, behavior must be orchestrated at a high-
level which is easily human-interpretable.

Sentry has a unique opportunity to provide software which
remains broadly useful to researchers beyond just the Sentry
program. Additionally, Sentry is frequently swapping out new
components and functions, and so any mission controller used
by Sentry must be fairly modular: portions of the architecture
should be easily re-configured and swapped in or out for
experimentation or integration with new devices. This also
drives the interest in developing such a system in-house and
pushing it as an open-source release.

Despite this modular approach, DINOS-R will strive to
be monolithic rather than component-driven. Though other

architectures consider this to be disadvantageous, for DINOS-
R it is an explicit goal. A monolithic architecture intentionally
prioritizes simplicity, ease of use and understanding, and ease
of integration and debug. Though distributed architectures
offer more theoretical advantages, for field readiness these ad-
vantages are outweighed by simplicity and risk minimization,
and a monolithic architecture remains capable of producing
the behavior required of AUVs.

Sentry is an operational platform, not an experimental
one. This drives the interest in a monolithic architecture, but
more broadly presents the primary motivator. Any architecture
produced for Sentry must ultimately be highly reliable and
be reasonable for a team of engineers to maintain, while
producing useful behavior for scientific data collection sub-
sea.

IV. ARCHITECTURE

DINOS-R is a toolkit for producing simple or complex
robot behavior. It provides library calls prior to deployment
to describe, assemble, specify, and analyze robot behavior or
system outcomes. Core functionality is implemented as plugins
that are provided to a central orchestrator. This allows any
new implementation of each core function to be provided for
experimentation or custom configurations.

During runtime, an execution cycle that performs and self-
monitors ongoing behaviors may re-task as appropriate (de-
pending on safety or operator-specified triggers). Throughout
the mission, DINOS-R continuously selects the most appro-
priate behavior and evaluates its status in real time. This
selection and evaluation is based on mission-specified goals
or instructions, as well as system-specified safety parameters.
These are defined by extending Python as a domain-specific
language in the hopes that this reduces the bar of entry for
non-experts.

Note here also another difference between DINOS-R and
other mission planning systems: DINOS-R does not draw a
distinction between the planning and execution phase. Any-
thing that can be performed on land can be instructed to the
system, in real time, while underway subsea. This dramatically
improves adaptability and functionality.

Several threads run in parallel, producing a monolithic
architecture that remains lightweight and middleware-agnostic.
When a behavior is run, it is run independently; the self-
monitoring and self-assessment processes also run indepen-
dently. This ensures that no middleware is a dependency, but
behaviors which are being called may still depend on them.
As a result, either ROS 1 and ROS 2 can be used, or neither if
this is preferred. Though this monolithic and strictly structured
approach presents some limitations, they are balanced out by
the behavior construction system and provide key advantages
stemming from simplicity: most notably, ease of engineering
and debug in—the—field.

The core of DINOS-R is written in Python 3. There are
several core systems which can be swapped out as necessary,
assuming they meet system-specific interfaces. Behavior spec-
ifications are outlined in Python: PDDL-like information about

what conditions must be met before and after a behavior can
be provided programmatically. Larger sets of behaviors can be
assembled using Python’s import system, allowing complex
vehicle-specific or mission-specific sets of behaviors to be
quickly assembled.

The implementation and definition of behaviors are strictly
separated. This is a concept borrowed from DIARC [3] that
has proven valuable both developmentally (the system does
not require knowledge of the hardware to be run on it, and
any system which implements the appropriate interfaces can
execute a plan) and conceptually (the system can reason about
behaviors it does not yet have). Python function annotators are
provided, allowing the programmer to indicate what functions
should be associated with what behaviors.

Behaviors can also be constructed using other behaviors.
This permits the integration of behavior trees, reinforcement
learning, finite state machines, or other techniques. Because
these produce behaviors, and behaviors can be constructed into
other behaviors, it is reasonable to expect that developers will
produce complex core behaviors using these tools, that mission
planners will produce missions using simple sequences, and
operators will inject new steps to the plan during execution as
needed.

For deployment, DINOS-R is provided with a series of core
systems, each implemented as a plugin. A DINOS-R agent is
four central databases that track the system and its capabilities,
the deliberator, and robot-specific implementation classes.
Because the individual functions which implementation robot
behavior are tagged with relevant behavioral information, the
deliberator learns its facts about how behaviors interact with
the environment as it consumes each class it can employ.
However, these facts can also be provided absent of any
implementation.

The databases centralize information to prevent duplication
and to provide common access, which simplifies debug and
the introduction of new systems. Again borrowing from DI-
ARC [5], there are several which enable high-level reasoning.
First is the behavior database, which stores information about
what behaviors are available, their preconditions and effects,
and how they can be called. The second is a belief database,
which tracks symbolic states which are believed to be true
about the environment. Some of these facts are inferred by the
success of completing a behavior (e.g., we infer that going to
a location means we are now in that location) while some
are explicitly observed (e.g., by referencing deadreckoning
data). Noting a mismatch in these becomes a valuable self-
checking behavior. Third is a ‘numerics’ database, which
associates high-level symbolic information (“survey zone a”)
with concrete data (a set of coordinates). This separation
simplifies the planning stages and allows behavior reuse:
planning occurs in the abstract (“I will need to survey zone a”)
and then behavior implementations are acquired as necessary
(“to survey zone a, I first will go to the coordinate...””). Fourth
is the self-assessment database, which tracks behaviors over
time (using metrics like time, battery use, success percentage)
for real-time self-checking and future planning.

The deliberator monitors current goals. These goals are
high-level symbolic goals, not control system goals (e.g., “sur-
vey this area” rather than setting a velocity target). By default,
DINOS-R prioritizes user-specified behavior but will switch to
self-directed behavior when needed. Plans and behaviors are
constructed using symbolic representations (e.g., “the survey
zone”, “the start location”) rather than explicit numerical
values. The system automatically associates these symbols
with concrete values at runtime. This reduces cognitive load on
mission designers and minimizes human error. This improves
reusability and allows symbolic references to be reassigned or
overridden at runtime.

As behaviors are run, they are monitored by the deliberator.
Global safety parameters (such as maximum depth or keep-
out zones) are actively monitored, and behaviors will be halted
in favor of self-preservation behaviors if necessary. Behaviors
may also be halted when some behavior-specific termination
condition is met (e.g., a “go to waypoint” behavior is halted
when we are observed to be within a reasonable range of that
target).

V. DEPLOYMENT

These tests took place through the NSF support for en-
gineering work on AUV Sentry and HOV Alvin. Testing
occurred aboard the R/V Atlantis in early March 2025 on
Sentry dive 768.

The first set of tests took place as a digital twin setup.
Throughout the at-sea time for this testing period, Sentry was
deployed for other objectives using the standard MC approach.
In parallel, DINOS-R was made to replicate these mission
deployments in a physics simulatiorﬂ and real-world mission
behavior was compared to simulation behavior. This increased
confidence prior to actual deployment.

The objective of the real-world deployment was primarily
to validate simulation performance. Secondary objectives were
to build confidence in a real-time task planning system while
at-depth, and to show the system is capable of performing pre-
scripted missions. To that end, two approaches for behavior
selection were used. First, a set of high-level goals were
provided with no instructions on how to solve them, showing
the system can work towards complex goals autonomously.

A high level goal was provided. This plan involved full
coverage of a predefined region. The system was informed
that by the end of the mission, it should have completed
a survey at the appropriate depth for a multibeam survey
and dropped all Weightsﬂ This goal was specified using a
custom domain-specific language implemented in Python3 in
two parts. The first part was a symbolic description of the goal
(e.g., did_survey (zone_a) Aat_depth(surface)).
The second portion was information about these symbolic

I'Simulation testing was performed using an environment created in the
Gazebo [18] suite.

Note that Sentry enters a deployment over-ballasted, dropping a first set of
weights to become approximately neutrally buoyant for deep-sea operation,
before then dropping the remainder of weights for ascent.

operators that was essential for execution (e.g., the specific
coordinates that define zone_a).

When provided to the task planer, this automatically gen-
erated a plan with the appropriate steps. The system ap-
propriately determined that descent, self-calibration, survey
tracklines, and ascent would be necessary in that order. Then,
the actual paths for tracklines and connections between rele-
vant waypoints were generated. The descent, calibration, and
ascent behaviors are pre-existing and fairly hardcoded, but
the survey tracklines are not: they must be computed for full
coverage of a specific zone. This full-coverage computation
was performed automatically, and the new behavior satisfying
the coverage requirement was added to the behavior system.
During initial deployment, the generated pathing was replaced
with pathing from a previous dive for predictability and safety.
This replacement was done while the vehicle was idling in a
fully-running, ready-to-deploy state.

For purposes of predictability and safety during this ini-
tial deployment, the behavior which executes this generated
pathing was replaced with a behavior which executes a pathing
from a previous dive. This also occurred while the vehicle was
idling in its fully-running, ready—to—deploy state. In doing so,
we observe that actions can be generated, modified, and made
available dynamically, even while in operation.

The descent behavior, like the pathing behaviors, is actually
more complex than a simple hard-coded event. A series of
events must occur in a specified order: first, the actuated fins
must be set to the appropriate orientation for descent; then
the system must wait while providing status information until
within an appropriate range to finish the descent sequence;
then it must wait until the DVLE] shows appropriate altitude;
then vertical thrust is initiated to slow descent before the
descent weights are dropped and operation begins. Rather than
hard-coding this functionality, this behavior is composed of
several other behaviors (set thruster position, wait until depth,
etc). This eases behavior implementation, increases reliability
through reuse, and eases modification for future missions.

This has already demonstrated both on-deck generation of
behavior sequencing as well as the ability to generate and add
behaviors dynamically, as appropriate. However, it is often
necessary for operators to introduce strictly-defined steps in
a plan. To test operator overrides of behavior, this goal was
provided alongside a simpler human-produced sequence. The
task planning system had correctly inserted a magnetometer
calibration step prior to the survey based on system knowledge
that magnetometer use depends upon calibration. For this
deployment, however, this is non-critical, and a new plan
was inserted which removes that step. This demonstrates on-
surface operator overrides. It also shows that although the task
planner remains central to anticipated operation, it is possible
to deploy a more typical hard-coded mission plan, either in
parallel or independently.

3The Doppler Velocity Log, while generally used for measuring speed and
direction over ground, also provides an altitude measurement that we use to
ensure we are within reasonable range of the sea floor before dropping weights
and finishing the descent sequence.

The dive began as a fairly standard Sentry deployment,
with typical deployment procedures followed. Other hardware
was being tested on-board in parallel to this test, but this
testing did not impact the deployment. As a result, Sentry
was configured with the typical drop-weight configuration for
descent, and with the typical sensor suite (which includes
multibeam, sidescan, CTD, and other sensing).

During deployment, this specified plan was appropriately
followed. With the exception of some implementation issues
that are not relevant to the architecture (most notably, re-
implementation of some central behaviors led to coordinate
frame issues), the plan and survey were completed success-
fully.

The ability to inject new high level goals was also tested.
30 minutes prior to the anticipated end of the survey, Sentry
was instructed to abort the mission. Importantly, this was
not done using a specialized abort behavior (although one
does exist). Instead, an acoustic command was sent that
modified the current goal. This new goal was that Sentry must
be ready for recovery. As a response, DINOS-R produced
a new sequence of behaviors (dropping weights, changing
thruster orientation, waiting for recovery), and prioritized these
because they originate from the operator. This showed that
new goals can be inserted and prioritized, while ensuring safe
recovery and concluding the dive.

Recovery completed without incident and was otherwise
standard.

VI. DISCUSSION AND FUTURE WORK

The results of these in-simulation tests and real-world
deployment show promising results with much future work.
Most notably, it has demonstrated that a symbolic planning
system is capable of providing equivalent functionality to
hand-crafted plans aboard AUV Sentry, while also showing
that it can exceed current capabilities. Additional development
is ongoing in several key areas, with future developments still
being planned.

First, access to non-expert users is being prioritized. A web-
based GUI is in development which will permit science users
to perform their own mission planning, and evaluate outcomes
and objectives, while using the same tooling that the expert
operators will employ. This changes the relationship between
Sentry, the Sentry operator, and the science user: rather than
a client—operator—service relationship, the client and operator
will collaborate with Sentry to produce a mission that meets
science goals alongside safety needs. Similarly, because this
approach allows programmatic control of complex behavior,
an API is in development to allow the science user to have
a “backseat driver” program. This will allow the scientist to
direct behavior of Sentry using their custom algorithms, while
the Sentry team remains confident that behavior is constrained
to safe operation.

Related to these is an open-source release and extension
to other AUVs. The core problems being addressed here are
broadly applicable to other autonomous undersea systems, and
much duplicate effort is spent on creating similar systems

of autonomy. Ideally, this architecture (or a similar one) can
form the foundation of a broader collaboration among users of
scientific AUVs, where generally-useful behaviors or functions
can be shared.

Other features are also in development. Preliminary work
has integrated linear temporal logics (LTLs) into the planning
system and GUI, so that basic safety guarantees (e.g., “never
enter this zone”, “always finish with greater than z battery per-
centage”) can be enforced. Integrations with the PRISM [19]]
probabilistic verification system and SPIN [20] model checker
are currently being tested. Multi-agent deployments have not
yet been performed using Sentry, but this approach supports
such a development and so this is being considered. Finally,
additional tooling to support ease of real-time use and intro-
spection is being developed.

VII. CONCLUSION

DINOS-R, a novel architecture for AUV mission planning
and deployment, was developed and first tested on AUV
Sentry. Although it remains in development, it seeks to replace
the legacy MC system by allowing safely retaskable behav-
ior. By adopting techniques from the cognitive architecture
space that have not yet been brought to deep-sea autonomous
systems, DINOS-R has the potential to enable more robust
deployments and provide access to scientific data collection
that were previously inaccessable. These claims were validated
in a preliminary field deployment on board Sentry.

REFERENCES

[1] R. Brooks, “A robust layered control system for a mobile robot,” in [EEE
Journal of Robotics and Automation, vol. 2, no. 1, 1986, pp. 14-23.

[2] E. Gat, “Three-layer architectures,” in Artificial Intelligence and Mobile
Robots. MIT Press, 1998.

[3] R. Arkin, “Integrating behavioral, perceptual, and world knowledge in
reactive navigation,” in Robotics and Autonomous Systems, vol. 6, 1990,
pp. 105-122.

[4] R.P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack, “Experiences
with an architecture for intelligent, reactive agents,” in Journal of
Experimental & Theoretical Artificial Intelligence, vol. 9, 1997, pp. 237—
256.

[5] M. Scheutz, P. Schermerhorn, J. Kramer, and D. Anderson, “First steps
toward natural human-like hri,” Autonomous Robots, vol. 22, no. 4, pp.
411-423, 2007.

[6] J. E. Laird, The Soar Cognitive Architecture. MIT Press, 2012.

[7] J. R. Anderson, ACT-R: A Theory of Higher Level Cognition and Its
Relation to Visual Attention. Psychological Review, 1996.

[8] J. S. Albus, “Outline for a theory of intelligence,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 473-509, 1991.

[9] C. McGann, R. Smith, B. D. Smith, D. R. Thompson, and D. Wetter-

green, “A deliberative architecture for auv control,” in JEEE OCEANS,

2008.

M. Benjamin, H. Schmidt, P. Newman, and J. J. Leonard, “Nested

autonomy for unmanned marine vehicles with moos-ivp,” in Journal

of Field Robotics, vol. 27, no. 6, 2010, pp. 834-875.

J. Frank, A. J6nsson, A. Jénsson, and P. Morris, “Planning and schedul-

ing for fleets of earth observing satellites,” in International Symposium

on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS),

2001.

G. Rabideau and S. Chien, “Autonomous mission execution with mexec,”

in i-SAIRAS, 2019.

M. Cashmore, M. Fox, D. Long, D. Magazzeni, and B. Ridder, “Rosplan:

Planning in the robot operating system,” in ICAPS, 2015.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, 2009, p. 5.

I. A. Nesnas, T. Fong, R. Volpe, and A. Wright, “Claraty: An architecture
for reusable robotic software,” in International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i-SAIRAS), 2006.

K. E. Chen, Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk, J. Gonzalez,
J. Kubiatowicz, and K. Goldberg, “Fogros: An adaptive framework for
automating fog robotics deployment,” in 2021 IEEE 17th International
Conference on Automation Science and Engineering (CASE). 1EEE,
2021, pp. 2035-2042.

M. Colledanchise and P. Ogren, Behavior Trees in Robotics and Al: An
Introduction. CRC Press, 2018.

N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ international
conference on intelligent robots and systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. Ieee, 2004, pp. 2149-2154.

A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, ‘Prism: A
tool for automatic verification of probabilistic systems,” in International
conference on tools and algorithms for the construction and analysis of
systems. Springer, 2006, pp. 441-444.

G. J. Holzmann and M. Florian, “Model checking with bounded context
switching,” Formal Aspects of Computing, vol. 23, no. 3, pp. 365-389,
2011.

	Introduction
	Background
	Design Philosophy
	Architecture
	Deployment
	Discussion and Future Work
	Conclusion
	References

