
A Gentle Introduction to Symbolic Planning, Reasoning,
and Formalisms
Chris Thierauf

January 2026 (version 5)

When you plan to accomplish a complex goal, you break it down into a series of

tasks that you know how to accomplish. For example, to make yourself a sand-

wich you must first go to the kitchen, then open the fridge, then grab the bread,

and so on. How can robots solve the same type of problem? We know that we

can hand-write behavior using code, but this does not provide adaptability. For

example, our sandwich-making code can’t be used to instead bake a cake (even

though they use the same core steps of going to the kitchen, retrieving food, and

preparing it).

This is fine for warehouse robots, where we know the exact objects they will

receive and the exact output they must produce. But as robots move toward

the real world, this is much less acceptable. We need robots that are intelligent

enough to understand our changing priorities, that can adapt to changes in the

world around them, and that can make their own decisions about what to do next.

We’re describing a form of AI here, and this problem is typically solved by a form

of AI called “symbolic planning”. With symbolic planning, we define a symbolic

model of the world, and then search over possible sequences of actions to find

one that satisfies a goal. This model contains facts, actions, and how actions

change facts. The logic defines what transitions are possible, and planning is the

process of exploring those transitions to discover what sequence accomplishes

the desired outcome.

The goal of this document is to provide a human-readable introduction to the

field of symbolic planning and first-order logics, which produce the foundation for

most of the symbolic AI field. This document focuses on providing concise intro- You should also check out Ghallab’s “Auto-
mated Planning: Theory and Practice”, but it’s
a long textbook. This is more of a quick intro.

ductions to the mathematical foundations, and an intuition of how these problems

are generally solved and deployed in real-world robot systems.

To introduce these concepts, I’ll first start with a bit of history to connect Classi-

cal AI to other forms of AI, and some conceptual background. I’ll then introduce a

motivating example to show how these concepts allow a robot to solve a challeng-

ing planning problem. Finally, I’ll describe the theoretical language and symbols

that are typically used in the academic literature, and tie back in to real-world

use-cases.

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 2

A Very Brief History of AI

When you think of “AI” or “machine learning”, you probably think of deep learning,

reinforcement learning, computer vision, neural nets, etc. However, these only

represent “contemporary” AI. Prior to this new wave were the “symbolic” or “clas-

sical” approaches1. These approaches revolve around symbols, logic, and explicit 1 For the sake of consistency I’ll stick with the
term “symbolic” since it’s more descriptive and
accurate, but it’s worth being aware of both
terms.

mathematical reasoning.

Based on this concept, systems were produced that could consume rules and

generate novel conclusions, most famously with the creation of LISP (which is still

in use today). This allowed the creation of “expert systems”: if you have a human

expert sit down and write a bunch of basic facts about their area of expertise, you

can have an AI that captures that knowledge. It can be queried, and can even

generate new conclusions that were not encoded – they might even be unknown

to the original expert! In one famous example, the now-defunct Digital Equipment

Corporation used one of these expert systems to allow technicians to configure

their extremely complicated supercomputers without requiring the assistance of a

specialist, saving tens of millions of dollars in half a decade.

This was very exciting: if we can just encode more and more rules, we can

produce more and more sophisticated behaviors. Researchers famously believed

that they would crack something close to full AGI within the decade2. Obviously, 2 The 1956 Dartmouth Workshop, which
gathered prominent researchers in the field,
is known for producing the term “artificial
intelligence” and for believing that they would
make “substantial progress” to full language-
capable problem-solving systems within “a few
summers”, with the completed solution being
predicted to arrive within 10 years after that.

this didn’t happen. That’s because unfortunately, there’s a catch: you need a lot

of rules, and they need to be written by hand. These rules are firm, and firm rules

are brittle. Further, each rule introduces the need for slightly more computation,

which quickly adds up.

Despite that, symbolic methods still have their applications. In very controlled

domains, like a warehouse or factory, the rules can be written and assumed to be

unchanging. In these domains, symbolic planners are reliable and interpretable,

and remain effective at producing long-horizon goal-directed behavior. In less

controlled domains, like field robotics, the world is only partially observable and the

rules are often changing or underdescribed. However, symbolic methods remain

valuable at a higher level of abstraction, where they reason over goals, constraints,

and long-horizon outcomes. As a result, allowing symbolic methods to direct

machine learning methods has been a powerful tool for extending their capabilities:

for example, a symbolic planner can select a sequence of reinforcement learning

policies, allowing symbolic planning to cover the long-horizon weaknesses of RL

and allowing RL to handle the control policies planners are unable to perform.

This document focuses on the symbolic side of these systems, which remains

largely the same independent of how it is (or isn’t) integrated with other systems.

Symbolic systems will require states, actions, and goals to be represented so that

a plan solving them can be found. The concepts that enable this planning are

described next.

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 3

Conceptual Background for Symbolic Planning

Let’s consider a classic example of logical reasoning:

1. All humans are mortal.

2. Socrates is human.

3. Therefore, Socrates is mortal.

From facts 1 and 2, we can conclude fact 3. If you could convert facts like this

into code, you would produce a system capable of making the conclusion to fact

3 on its own. And from that 3rd fact, additional rules can be chained together to

allow for further conclusions: all mortals need to eat, therefore Socrates needs to

eat, etc.

The connection to robot planning here is that we can reason about anything we

have facts for. We can provide facts about actions and the environment, and then

logically reason about how actions might impact the environment in a way that

solves our problem. Consider a robot-behavior-oriented version of the previous

problem:

1. There are 2 rooms, labeled X and Y.

2. Calling the “move” behavior brings us from room X to room Y.

3. Therefore, to get to room Y starting from X, run ‘move’ from X to Y.

With fact 1, we provide basic information about the world. For fact 2, we pro-

vide a fact about the behavior the robot is capable of. We can then conclude fact

3, which is about a specific action that can be employed for a specific result. This

particular fact is useful if our goal is to be in room Y. But unlike this example,

planning isn’t about deriving new static facts: it’s about using static facts to see

how actions can influence the environment and work towards complicated goals.

To apply this knowledge towards getting a full plan, then, we have to go several

steps further. We can expand this logic with more rules about the world and more

rules about how behaviors impact the environment. For example, we might add

information about “picking up” resulting in a condition of “holding”, and that “hold-

ing” while “moving” produces “carrying”. As the complexity of the world grows, so

does the task of finding a solution. A symbolic planning system aims to find new

knowledge about how these predicates can be chained together to accomplish a

complex goal. For this reason, we have to perform a long-horizon search across

many different combinations of possible actions.

To actually implement this, we’ll need to construct some formal representation

of the logic being used here. Once it’s math, then we can convert it to code.

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 4

Propositional Logics

If you’re a programmer, you’re probably already familiar with propositional logic:

you use it every time you write code, and you probably encountered it if you took

a Discrete Math course. Here’s a classic example you’ve probably seen before:

in propositional logic, we start with propositions (statements that are true or false):

for example, “it is raining” or “the ground is wet”. We can then use logical oper-

ators like negation, conjunction, disjunction, and implication to describe more

complex combinations of factual statements. For example, we might state that

R represents if it is raining and W represents if the ground is wet. Then, we can

make claims like“W is false, therefore R is false”.

We’ll go beyond that typical example here, so that we can extend it into the

first-order logics we’ll use for planning.

In propositional logic, we define a handful of components:

Variables. Variables, like in traditional math or programming, are symbols that

represent some unspecified value that can be filled in later: x, y, a, b, cat, dog.

Different communities use different conventions. In many conventions, variables

are left lowercase if they have no fixed value, but uppercase if they do3. I’ll use 3 For example, cat is just some variable that
we’re calling ‘cat’ but Cat is a specific cat.that convention here. Sometimes you’ll also see variables as a single character: c,

not cat. I’ll stick to letting variables be arbitrary lengths for legibility.

Operators. From propositional logic, we keep the concept of operators. There

are some familiar faces here:

• ⇔, meaning bicondition: a⇔ b states that “a if and only if b”; stating they are

fully equivalent.

• ¬, meaning negation. For example: ¬>⇔⊥
• ∧, meaning conjunction (“and”). Ex: >∧>⇔> but>∧⊥⇔⊥.

• ∨, meaning disjunction (“or”). Ex: >∧>⇔> and>∧⊥⇔>.

• ⇒, meaning implication: a⇒b states that “if a, then b”. ‘⇒’ can also be read as “implies” or “it follows
that”

Basic First-Order Logic

First order logic is an extension of propositional logic. Functionally, it’s the same:

any problem you can solve with a first-order logic can also be solved using

a propositional logic. However, they differ significantly in expressiveness and

practicality: first-order logics provide powerful tools to simplify the syntax of propo- First-order logic is often abbreviated “FOL”

sitional logics. They provide tools for compact, abstract descriptions that would be

too long to practically communicate in propositional form.

With our propositional logics, we can represent facts about what our robot is

capable of: for example, “the robot can move from room one to room two”, “the

robot can move from room one to room three”, “the robot can move from room

two to room one”, and so on. But what we really want to communicate here is

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 5

that “the robot can move from any room to any other room”. To do this, we need to

introduce the two new tools that first order logics provide:

Predicates. Predicates get a bit fancier in first-order logics. In the simplest As with variables, the math convention is to
keep predicates single-character: B(x,y)
instead of IsBox(x)), but again, we’ll stick with
the more verbose programming convention
here.

form, predicates represent properties: we might define the predicate IsBox(x),
which states that “x is a box”. Predicates can also get more complex: we might

define the predicate On(x,y), indicating that x is on y. We also keep the concept

of “true” (which has its own symbol: >) and “false” (which also has a symbol: ⊥).

Quantifiers. We already have the ability to check for the truth of a statement

thanks to variables and predicates: that’s the foundation for propositional logic that

we build on here. Quantifiers are introduced in first order logics to describe the

“range” of the elements that we are reasoning over, allowing us to take advantage

of set theory. There are two main quantifiers: ∀ and ∃.
∀ is the “universal quantifier”, and it is read as “for all”. It states that all ele-

ments hold true: for example, we might write

∀x(IsCat(x)⇒ IsMammal(x))

to state that “for every x, if the x is a cat, the x is a mammal”. We can also make

use of set theory here:

∀x∈{German Shepard, Black Lab, Beagle}(IsDog(x))

is true, because everything listed in the set satisfies “IsDog”.

∃ is the “existential quantifier”, and it is read as “there exists”. It states that at

least one element holds true. For example, we can see that:

∃x∈{1,2,3,4,5}(x>4)

evaluates to true, because there exists at least one value greater than 4 in the set.

There are other quantifiers in other first-order logics not worth covering here:

first-order logic is actually a class of logic with many different slight variations, but

these are the core features that are fairly universal.

In practice, planners do not generally reason over these abstract variable-

based rules directly. Instead, we convert “move from any room to any other room”

through a process called “grounding”. For example, since our “move” rule takes

two rooms, we find every combination of two rooms and produce a predicate for

each one. Most planner implementations require this because it produces fully

specified states and actions that can be evaluated and simulated. However, this

process quickly becomes a bottleneck. However, this grounding process quickly

becomes a bottleneck. A small number of abstract actions can expand into thou-

sands or millions of concrete actions as the number of objects grows, leading

to the “state explosion problem”. Although it remains conceptually feasible, it is

also a major driver of computational cost in symbolic planning, and much ongoing

research in this space focuses on reducing the need for this computation.

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 6

Foundations of Symbolic Planning

Planning is all about modifying states by finding what series of actions modify the

environment until we arrive at the goal state. To do this, there are a handful of core

building blocks.

States. When we talk about a “state” in planning, we’re referring to some

representation of the facts about the robot and the world the robot is in. Thanks

to first order logic, we have the formal language to describe these states. For

example, we might be in the state of At(X). However, we could also introduce

new predicates:

• Let ObjectAt(x,y), which takes an object and a location, represent an object x
being at a location y.

• Let On(x,y), which takes two objects, represent x being on top of y.

• Let ∀x∈{Kitchen,DiningRoom}(IsRoom(x))
• Let ∀x∈{Mug,Table}(IsObject(x))

With this, we could represent a much more complex state. For example, we

could state:
Also notice that we’ve never stated outright
that the mug is in the kitchen, and yet we can
logically infer that it must be! We know that
since the mug is on the table, and the table is
in the kitchen; therefore the mug must be in the
kitchen.

On(Mug,Table)∧ObjectAt(Table,Kitchen)∧At(DiningRoom)

This represents “The mug is on the table in the kitchen and the robot is in the

dining room”. And, since we’re dealing with first-order logics here, would could

get substantially more complicated if we really wanted to (the mug is one the

table, and it’s colored blue, and it’s filled with coffee, and coffee is a liquid, and the

liquid. . .).

Actions. An action is something the robot can do which will impact the en-

vironment in some way. To make this concept useful for planing, actions have

preconditions (predicates that must be true before the action can be performed)

and effects (predicates that will be true if the action has been succesfully per-

formed). Effects are generally split into ’positive’ and ’negative’ effects, meaning

that they add or remove predicates, respectively. This is the “STRIPS-Style” of describing
planning, referencing a conceptual origin for
this style of work.

Planning Domain. When we combine a set of actions and possible states,

this constructs the ‘domain’. If we then add a start state and a goal state, we’ve

produced a planning problem. The solution to this problem will be a series of

sequential actions (the plan). Sometimes the plan is called a policy, but that gets

confusing when dealing with other types of AI (where a policy has a similar but

different meaning) so it’s best to avoid this phrasing if possible.

Commonly used notation

These concepts are commonly described using some specific symbols: States

can come in a set as S, or be on their own as s. One special state is s0, the start-

ing state of a plan. Another is sg, the goal of the plan. The goal is never specified Sometimes the goal is described as a set,
Sg, because there might be infinitely many
methods of satisfying a goal: there will be parts
of the problem that have no impact on if it is
successful, and so many solutions might be
equally valid

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 7

in terms of things that must be done (that would be an action), it is specified in

terms of things that must be true for us to consider the plan successful. This dis-

tinction is what allows us to produce plans that are adaptable, because we allow

these abstract goals to produce the actions (rather than confining them).

The planning problem is usually labeled as P. The plan itself is usually labeled

as either π or P, with each step in the plan being π0,π1,π2. . . (or p0,p1, etc). A

planning domain is marked as Σ, and it contains the states, actions, and effects.

The effects are usually described more mathematically as a “transition function

taking a”: this is just an annoying way of saying “ we have a method of taking an

action and finding out its effects (like by looking them up)” It’s typically represented

using lowercase gamma (as in γ(s,a)).
When this is written more formally, it’s common to see papers that state some-

thing like:

“The planning domain Σ=〈S,A,γ〉; where each s∈S is a state represented by a

first-order logic; each a∈A is an action which can be performed by the agent, and

the transition function γ(s,a) describes the transition from some state s to s′ given

a. With this, we produce the planning problem P, where P(s0,Sg,Σ) returns the

sequence of actions π which satisfies Sg when starting from s0.”

That just translates to:

“We have states, actions, and the ability to transition between them. With this, we

can perform planning from any start state to a set of goal states.”

Solving Planning Domain Problems

A simple conceptual example

Let’s explore how these conceptual tools allow us to solve complex problems.

We’ll use a simple domain example: there are three boxes (red, blue, and green)

and three rooms (room one, two, and three), and one robot. The robot can carry

boxes from one room to another.

To describe this domain, we’ll provide the rooms, boxes, and robot as vari-

ables. We can describes the rooms: room(one), room(two), room(three);
and we can describe the boxes box(red) box(blue), box(green). The robot

is its own thing: robot. We’ll add a predicate: At, so we can state things like

At(box(red),(room(one))) to mean “the red box is at room one”.

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 8

So now we can describe a scene:

At(box(red), room(one)) ∧

At(box(blue), room(one)) ∧

At(box(green), room(one)) ∧

At(robot, room(two))

Figure 1: The environment we’re describing
using formal logics.

This means:

The red box is in room one, and

The blue box is in room one, and

The green box is in room one, and

The robot is in room two.

Now let’s describe our action space. The robot can go from one room to another,

and the robot can carry a box from one room to another. We’ll call the first action

“goto” and the second “carry”.

Because the goto action changes the robot’s location, it will require we be

in one room, will have the effect of no longer being in that room and of being

in the goal room. So we have a precondition of At(robot, rooma), a negative

effect: e f f−(At(robot, rooma)), and a positive effect: e f f+(At(robot, roomb)).

Notice here that I’m not using a specific room, just the stand-in variables a and

b which are the room type: this is shorthand that allows us to re-use the goto

command across all different combinations of rooms.

We’ll do the same thing with the carry action, but it’ll be a bit more sophis-

ticated. We require that the robot and the box be in the same room, so the

precondition is At(robot, rooma)∧ At(boxb, rooma). Then, we can add the

effects that change both the robot and box location: e f f−(At(robot, rooma)∧
At(boxb, rooma)), and e f f+(At(robot, roomc)∧At(boxb, roomc)).

Now we can start planning. We’ll describe a goal:

At(box(red), room(two))

Note that it’s an underspecified goal: we don’t actually say anything about the

location for the robot, or the other two boxes! That’s OK – we define “solved” as

arriving in any state where each stated predicate in the goal is met. So being

underspecified will actually work to our advantage: there’s more potential states

that satisfy this goal. So we could have all the boxes in room two
and the robot in room one, or we could have
all the boxes in room two and the robot in room
two, or...

Finding the plan that produces this outcome is nontrivial. The only knowledge

the system has is the symbolic description of the world, the actions it can perform,

and the goal it is trying to satisfy; it does not have any intuitive understanding of

which actions are “reasonable” or “useful.” From the planner’s perspective, every

applicable action is a candidate, and the only way to determine whether an action

sequence is successful is to apply it and observe the resulting state.

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 9

As a result, planning becomes a search problem over possible sequences

of actions. Starting from the initial state, we must systematically consider what

happens if we try one action, then two actions, then three, and so on, until we

encounter a state that satisfies the goal. A breadth-first tree search provides a

simple baseline: it explores all plans of length one before any plans of length two,

all plans of length two before any plans of length three, and so forth. Assuming a

solution exists for this problem within this depth, we know that we will eventually

find it. This makes it a reasonable baseline
for understanding this problem, but it is
computationally impractical for most real
problems. Practical planners generally use
heuristics to guide search and aggressively
prune the search space.

We have a start state, and we have our two actions. Thanks to the first-order

logic, these two actions are actually six possible actions: goto actually represents

goto room one, goto room two, and so on.

This is part of how you get the “state explosion”
problem: one of the more major drawbacks of
this kind of search is that one simple addition to
your problem actually becomes many additions
that grow very quickly.

At the first layer of the search, the robot can’t goto room two (we’re already

there), and it can’t carry anything (there’s nothing in the room to carry). But it

can goto room one, and it can goto room three. From room three, we again

can’t carry anything since we don’t meet the preconditions: there’s nothing in

this room. From room one, though, we can try a few things: we can carry the

red box, we can carry the blue box, we can goto back to room one. . . . If we

compute each of these, we notice that one of them meets our goal state! We now

have our plan: go to room one, and carry the red box to room two.

For a more visual description of this problem solution, see the figure below.

Each box is a different state, and each arrow is an action that brings us to that

new state. The successful goal is highlighted in green. By generating this tree, we

can search through it for the steps that accomplish our goal.

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 10

Notice several things here. First, we went off in a branch that wasn’t very help-

ful. That’s actually pretty common: we don’t know what to try until we compute it,

and so a lot of that computation will end up being wasted. A lot of the optimization

strategies in this field focus on finding and eliminating those branches before we

waste too much time on them.

Second, notice that there is redundancy in this tree. The bottom-right state is

the same as our start state! If we were to continue planning, we’d certainly see

more cases of this. It’s possible for planners like this to produce plans that are sub-

optimal, yet valid. For example, a valid plan would be to "go to room three, then go

back to room one, then go to room two, then carry the red box to room two".

For this reason, we need some way to measure our plans, so we can find

the “best” one. A common strategy is to say that the best plan is the one with the

fewest steps. Another common strategy is to assign a cost to each step, and then

try to find the plan that costs the least. This cost might be time, battery power, or

some other metric you can compute.

A implementation example

To keep the implementation accessible here, I’ll only describe pseudocode here. A

full Python implementation is available at the end of this document.

First, we’ll set up some actions. For the sake of our grounded example, these

will be their own algorithms: GoTo(r) and Carry(b,r), as Figure 1.

Algorithm 1: Action Definitions.
1: Let GoTo(r) be an action such that:

2: Preconditions: the robot is not already in room r
3: Effect:

4: remove the robot’s current location

5: add At(robot,r)

1: Let Carry(b,r) be an action such that:

2: Preconditions: the robot and box b are in the same room

3: Effect:

4: remove the robot’s current location

5: remove the box’s current location

6: add At(robot,r)
7: add At(b,r)

These become our action set A. Once we have some states to plan to and

from, we’ll have our domain. Then, we can transition from our facts to an explicit

algorithm (Figure 2). This figure makes breadth-first search slightly more formal

than the algorithm we casually described in the previous section, but it does the

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 11

same thing.

Algorithm 2: Breadth-First PlanningRequire: initial state S0, goal facts G, actions A, maximum depth D
Ensure: a plan achieving G, or failure

1: create an empty list of state–plan pairs

2: add (S0, empty plan) to the list

3: while the list is not empty do

4: remove the oldest (S, π) from the list

5: if every fact in G holds in S then

6: return π

7: end if

8: if the number of actions in π equals D then

9: continue

10: end if

11: for each action a∈A do

12: if a is applicable in S then

13: S′← result of applying a to S
14: π′←π followed by a
15: add (S′, π′) to the end of the list

16: end if

17: end for

18: end while

19: return failure

Although this procedure is intentionally simple, it captures the essential struc-

ture shared by many classical planning systems. The explicit separation between

action definitions, goal specifications, and the search procedure allows the same

planner to be reused across different domains simply by changing the actions and

predicates involved. The planning system doesn’t “know” anything about rooms or

boxes or what they do, it just “reasons” about them By “reasoning” here, I mean formal, algorithmic
reasoning over symbolic representations, not
human-level understanding. Despite this, the
resulting behavior can still be complex and
goal-directed.

The core structure begins by setting up the initial state (lines 1-2), and main-

tains a growing list of states to explore, each paired with the sequence of actions

that led to it. At each iteration (lines 3-18), we check a previously-unexplored state

plus plan, checks to see if it currently satisfies the goal, and if it doesn’t, expands it

by applying every single valid action to see what might happen next. By expanding

the states in this order, we guarantee that the first time we encounter the state it’s

with the shortest number of actions.

Of course, this implementation isn’t very efficient or novel. This is just a simple

version to provide you a better intuition. More sophisticated build upon this same

structure but add features for pruning redundant states, recognizing repeated

configurations, and prioritizing more promising branches to search.

These limitations have motivated the development of better algorithms and

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 12

common tools to describe and solve them, which we’ll start to explore next. Rather

than hard-coding actions and predicates in the planner, the way we’ve done here,

modern systems rely on a formal language that specializes in representing these

types of problems. PDDL is the most notable of these. The planner gains facts

about the domain from these languages, and then solves for a goal once provided

with one.

PDDL

So that’s the formal background and the most common terminology. With that in

mind, there’s many parallel projects that attempt to solve elements of this space.

PDDL, the “planning domain definition language”, is the most common method

to formally encode states, actions, preconditions, and effects described earlier so

that general-purpose planners can operate on them. There’s a handful of different

versions; the most commonly used is 3.1 This language provides us with the The Planning Wiki describes
PDDL in more detail: https:
//planning.wiki/guide/whatis/pddl

ability to make use of existing planners (sometimes called solvers) to return the

sequence of actions that solves this problem. The value of PDDL is that it provides

a common interface to all of these solvers, so you can compare them or swap

them out with each other.

Many existing planners are out there; the most common are the ones which

extend the “fast-forward” planner4. “ff-downward”, for example, is one popular 4 https://ojs.aaai.org/aimagazine/

index.php/aimagazine/article/

download/1572/1471/
implementation. Generally, systems will take these and wrap them for their specific

implementation. ROSPlan5 is one example of this, integrated into ROS: by using 5 https://kcl-planning.github.io/

PDDL, the planner can be provided an understanding of what behaviors are

available. The robot’s understanding of the current environment can be converted

to predicates using pre-implemented code: for example, some vision process-

ing ROS node that estimates if an object is on another object. When the goal is

specified, we’ve produced a problem that can be solved. The result of running

the planner on this domain + problem is a list of actions that we can then call. Of

course, this does again require some preimplemented code to handle converting

from a list of actions to actually calling code.

Another method is the language “LISP”. Its variants and versions are widely

used in these circles as well, even though it’s ancient for a piece of software (60+

years). But there continue to be updates to the language: Clojure is one more

modern and popular example.

Symbolic AI in real life

There are many uses of symbolic AI in real life. Many widely used formal decision-

making methods trace important conceptual roots back to symbolic reasoning and

planning, and it’s helpful to understand how these principles are translated into

modern real-life applications.

https://planning.wiki/guide/ whatis/pddl
https://planning.wiki/guide/ whatis/pddl
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/download/1572/1471/
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/download/1572/1471/
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/download/1572/1471/
https://kcl-planning.github.io/

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 13

Deep Submergence Laboratory / WHOI

I’ll start with some of my work: this forms the core of an architecture I’ve devel-

oped for AUV Sentry at the Deep Submergence Laboratory and National Deep

Submergence Facility. I’ve published more on this elsewhere6. 6 See
https:

//

www.

cthierauf.

com/

publications/

teleoreactive-cognitive-sentry-mission-executive

The existing architecture, MC, is more of a strictly-defined state machine: you

tell it the mission is started, and it’s pretty hard-coded to go through the different

steps of the mission, in order. It reads from a “.tracks” file, which has commands

like “go to” and “change altitude”. These steps are executed in order, and gener-

ated prior to deployment by hand-typing the high-level steps of a mission (which

are then converted into the individual tracks file steps).

In an at-sea trial of DYNOS, symbolic planning provided a handful of important

new features. Rather than specifying individual steps of the mission, we provided

a high level goal (complete a survey). It sequenced all the necessary behaviors,

like descent and the individual tracklines. Upon deployment, Sentry followed the

plan that the symbolic planning system produced, which included generating

tracklines and waypoints. During the dive, we sent a command that a new goal

(the mission being done) should be followed. In response, a new plan (containing

only the abort behavior) was followed.

Jet Propulsion Laboratory / NASA

The JPL/NASA robotics researchers have been big proponents of the popular

“three-layer architecture” approach7. In this approach, we break our architecture 7 See Gat’s “On Three-Layer Architectures” for
more: https://robotics.usc.edu/~maja/
teaching/cs584/papers/tla.pdf

into three conceptual chunks: feedback-control that reacts to stimulus in real-

time (which is usually not symbolic, it’s a real-time controls system), a short-term

planning system (which is generally symbolic), and a long-term planning sys-

tem (the long-term planning system is most often symbolic in deployed systems,

particularly where safety, interpretability, or hard constraints matter.).

Most recently of NASA’s missions, the Curiosity and Perseverance rovers

landed on Mars. Although missions here are more firmly constrained, they are

still symbolicly-represented plans: in this case, they make use of a timeline-based

representation to make the exact behavior clearer to understand and edit8. Note 8 The system is called COCPIT, and NASA
has screenshots of it that are easy to find if you
google around for it.

here one of the central benefits of a symbolic approach: grounding in symbols

makes communicating and modifying complex behavior much more achievable.

Symbolic decision-making played a central role in enabling Curiosity and

Perseverance to plan, inspect, and modify complex mission behavior. Goals are

provided to the system to produce a high-level sequences, and those sequences

can be communicated to the rover for execution.

https://www.cthierauf.com/publications/teleoreactive-cognitive-sentry-mission-executive
https://www.cthierauf.com/publications/teleoreactive-cognitive-sentry-mission-executive
https://www.cthierauf.com/publications/teleoreactive-cognitive-sentry-mission-executive
https://www.cthierauf.com/publications/teleoreactive-cognitive-sentry-mission-executive
https://www.cthierauf.com/publications/teleoreactive-cognitive-sentry-mission-executive
https://www.cthierauf.com/publications/teleoreactive-cognitive-sentry-mission-executive
https://www.cthierauf.com/publications/teleoreactive-cognitive-sentry-mission-executive
https://robotics.usc.edu/~maja/teaching/cs584/papers/tla.pdf
https://robotics.usc.edu/~maja/teaching/cs584/papers/tla.pdf

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 14

Amazon Robotics / Kiva Systems / Warehouse Robots

Amazon Robotics is a subsidiary of Amazon: they make the robots that enable

Amazon’s warehouses to operate with increasing autonomy. Prior to the ac-

quistion that made them “Amazon Robotics”, they were Kiva Systems, and they

pushed the concept of autonomous warehouses that have now become an almost

universal part of consumer delivery. It’s become a multi-billion dollar industry9: 24 9 https:

//

www.

statista.

com/

statistics/

1094202/

global-warehouse-automation-market-size/

billion as of this year, with projections of nearly doubling in the next 5 years.

Figure 2: A forklift-based AMR, like this
one produced by TUDOR, is capable
of autonomously finding pallets on a
warehouse floor, and carrying them to
their destination. Image from Wikipedia:
https://commons.wikimedia.org/w/

index.php?curid=7838942

Their primary innovation was a class of robots called an “AMR”. AMR is an

acronym for Autonomous Mobile Robot, which is very broad. It’s come to be inter-

preted as the class of warehouse robots that bring loads of product from point A to

B so that the product can be packed and shipped. This dramatically cuts down on

their time-to-delivery, which produces reduced costs and faster delivery times.

These systems work because of coordination at scale. By maintaining a fleet of

robots that are provided with a retrieval task, one at a time, a large set of products

can be shipped to individual homes. To make all this work, there needs to be an

impressive amount of internal coordination and long-horizon planning.

Public documents10 about the Amazon Robotics software architecture describe

10 Wurman, D’Andrea, and Mountz:
Coordinating Hundreds of Cooperative,
Autonomous Vehicles in Warehouses.

a cost-optimized planning problem, which is an extremely common extension of

the planning problem we’ve described earlier (the difference being that we assign

a cost to each action, and then pick the ‘best’ plan as the one with the lowest cost

instead of the one with the fewest steps).

symbolic planning.

IBM CPlex, OptaPlanner: Resource Scheduling

Let’s say you run a hospital. You have a known set of rooms and beds. You’ll need

to figure out how many nurses to have on staff and where they’ll need to be allo-

cated. This is very hard to do as the hospital gets bigger. This is where products

like OptaPlanner or IBM’s CPlex are handy: these use symbolic constraint-based

optimization rather than classical action-based planning, but they share the same

core idea: explicitly modeling structure and constraints so that a solver can search

for valid solutions. We can make this schedule by treating ‘work in room x ’ as an

action, and then provide as many rooms as need. Then the planning problem

becomes to add staff until the plan can be solved. This scales more effectively

than doing it by hand: as we add lunch breaks, overtime, and other real-life con-

straints, the problem becomes harder to solve. But this method allows us to make

a computer solve it for us.

https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://commons.wikimedia.org/w/index.php?curid=7838942
https://commons.wikimedia.org/w/index.php?curid=7838942

A GENTLE INTRODUCTION TO SYMBOLIC PLANNING , REASONING , AND FORMALISMS 15

Appendix A: PDDL construction

Here’s an example of PDDL. First we define the domain:

(define (domain blocks)

(:requirements :strips)

(:predicates

(on-table ?b - block)

(on ?b - block ?o - block)

(clear ?b - block)

(holding ?b - block)

)

(:action pick-up

:parameters (?b - block)

:precondition (and (clear ?b) (on-table ?b))

:effect (and (holding ?b) (not (clear ?b)) (not (on-table ?b)))

)

(:action put-down

:parameters (?b - block)

:precondition (holding ?b)

:effect (and (clear ?b) (on-table ?b) (not (holding ?b)))

)

(:action stack

:parameters (?b - block ?o - block)

:precondition (and (holding ?b) (clear ?o))

:effect (and (on ?b ?o) (clear ?b) (not (holding ?b)))

)

(:action unstack

:parameters (?b - block ?o - block)

:precondition (and (on ?b ?o) (clear ?b))

:effect (and (holding ?b) (clear ?o) (not (on ?b ?o)))

)

)

And then we can define the problem:

(define (problem blocksworld)

(:domain blocks)

(:objects A B C - block)

(:init

(on-table A) (on B A) (on C B)

(clear C) (clear A)

)

(:goal (and (on A B) (on C A)))

)

Appendix B: A more legible python example.

rooms = ["room(one)", "room(two)", "room(three)"]

boxes = ["box(red)", "box(blue)", "box(green)"]

robot = "robot"

AT = "At" # predicate name (just a string)

def at(thing, room):

return (AT, thing, room)

class Actions:

@staticmethod

def goto(destination):

Precondition: can't "goto" where you already are

def is_applicable(state):

return at(robot, destination) not in state

def apply(state):

new_state = state.copy()

Remove old At(robot, room_?) facts

for r in rooms:

fact = at(robot, r)

if fact in new_state:

new_state.remove(fact)

Add new At(robot, destination)

new_state.add(at(robot, destination))

return new_state

apply.name = "goto(" + destination + ")"

apply.is_applicable = is_applicable

return apply

@staticmethod

def carry(unique_box, destination):

Precondition: robot and box are in the same room

def is_applicable(state):

for r in rooms:

if at(robot, r) in state and at(unique_box, r) in state:

return True

return False

def apply(state):

new_state = state.copy()

Find the current shared room, then move both robot and box there

current_room = None

for r in rooms:

if at(robot, r) in new_state and at(unique_box, r) in new_state:

current_room = r

break

if current_room is None:

return new_state # should not happen if precondition checked

Remove old robot + box locations

for r in rooms:

new_state.discard(at(robot, r))

new_state.discard(at(unique_box, r))

Add new locations

new_state.add(at(robot, destination))

new_state.add(at(unique_box, destination))

return new_state

apply.name = "carry(" + unique_box + ", " + destination + ")"

apply.is_applicable = is_applicable

return apply

def breadth_first_search(start_state, goal_facts, actions, max_depth):

queue = [(start_state, [])] # (state, path)

while queue:

state, path = queue.pop(0)

Goal test: all goal facts must be present (predicate-generic)

if goal_facts.issubset(state):

return path

if len(path) >= max_depth:

continue

for action in actions:

if action.is_applicable(state):

next_state = action(state)

queue.append((next_state, path + [action.name]))

return None

Ground the domain.

This is where we go from "carry some hypothetical box to some hypothetical

location" to "carry the red box to room one" and "carry the red box to room

two" and "carry..."

grounded_actions = []

for r in rooms:

grounded_actions.append(Actions.goto(r))

for b in boxes:

for r in rooms:

grounded_actions.append(Actions.carry(b, r))

Start state s0

s0 = {

at("box(red)", "room(one)"),

at("box(blue)", "room(one)"),

at("box(green)", "room(one)"),

at(robot, "room(two)"),

}

Goal: At(box(red), room(two))

goal = {at("box(red)", "room(two)")}

plan = breadth_first_search(s0, goal, grounded_actions, max_depth=5)

print("Goal:", goal)

print("Plan:", plan)

	A Very Brief History of AI
	Conceptual Background for Symbolic Planning
	Propositional Logics
	Basic First-Order Logic
	Foundations of Symbolic Planning
	Commonly used notation
	Solving Planning Domain Problems
	Symbolic AI in real life
	Appendix A: PDDL construction
	Appendix B: A more legible python example.

